Object Detection
Getting Started
This is an expo module that lets you use the MLKit Object Detection library in your Expo app.
Installation
Install like any other npm package:
#yarn
yarn add @infinitered/react-native-mlkit-object-detection
#npm
npm install @infinitered/react-native-mlkit-object-detection
Basic Usage
1. Set up the model context provider
Use the useObjectDetectionModels
hook to load your models, and useObjectDetectionProvider
to get the provider
component.
This will make the models available via React context.
/// App.tsx
import {
ObjectDetectionConfig,
CustomObjectDetectorOptions,
useObjectDetectionModels,
useObjectDetectionProvider,
} from "@infinitered/react-native-mlkit-object-detection";
// Define your custom models if needed (see "Using a Custom Model" for more details)
const MODELS: ObjectDetectionConfig = {
furnitureDetector: {
model: require("./assets/models/furniture-detector.tflite"),
},
// You can add multiple custom models
birdDetector: {
model: require("./assets/models/bird-detector.tflite"),
// and override the default options
options: {
shouldEnableClassification: true,
shouldEnableMultipleObjects: true,
detectorMode: "singleImage",
classificationConfidenceThreshold: 0.5,
maxPerObjectLabelCount: 3
}
},
};
// Export this type so we can use it with our hooks later
export type MyModelsConfig = typeof MODELS;
function App() {
// Load the models
const models = useObjectDetectionModels<MyModelsConfig>({
assets: MODELS,
loadDefaultModel: true, // whether to load the default model
defaultModelOptions: {
shouldEnableMultipleObjects: true,
shouldEnableClassification: true,
detectorMode: "singleImage",
},
});
// Get the provider component
const { ObjectDetectionModelProvider } = useObjectDetectionProvider(models);
return (
<ObjectDetectionModelProvider>
{/* Rest of your app */}
</ObjectDetectionModelProvider>
);
}
2. Use the models in your components
The models are made available through the context system. You can access them in your components using the same hook
// MyComponent.tsx
import {
useObjectDetection,
ObjectDetectionObject,
} from "@infinitered/react-native-mlkit-object-detection";
import React, { useEffect, useState } from "react";
import { View } from "react-native";
import type { MyModelsConfig } from "./App";
type Props = {
imagePath: string;
};
function MyComponent({ imagePath }: Props) {
// Get the model from context
const detector = useObjectDetection<MyModelsConfig>("birdDetector");
const [detectedObjects, setDetectedObjects] = useState<ObjectDetectionObject[]>([]);
useEffect(() => {
async function detectObjects(imagePath: string) {
if (!detector) return;
try {
const detectionResults = await detector.detectObjects(imagePath);
setDetectedObjects(detectionResults);
} catch (error) {
console.error("Error detecting objects:", error);
}
}
// Call detectObjects with your image path
if (imagePath) {
detectObjects(imagePath);
}
}, [detector, imagePath]);
return (
<View>
{detectedObjects.map((detectedObject, index) => (
<View key={index}>
{/* Render your detection results */}
{JSON.stringify(detectedObject)}
</View>
))}
</View>
);
}
Model Options
The ObjectDetectorOptions
and CustomObjectDetectorOptions
interfaces support the following options:
interface ObjectDetectorOptions {
shouldEnableClassification?: boolean; // Enable object classification
shouldEnableMultipleObjects?: boolean; // Allow detection of multiple objects
detectorMode?: "singleImage" | "stream"; // Detection mode
}
interface CustomObjectDetectorOptions extends ObjectDetectorOptions {
classificationConfidenceThreshold?: number; // Minimum confidence for classification
maxPerObjectLabelCount?: number; // Maximum number of labels per object
}
Detection Results
The detectObjects
method returns an array of ObjectDetectionObject
objects. Each object contains the
following properties:
interface ObjectDetectionObject {
frame: {
origin: { x: number; y: number };
size: { x: number; y: number };
};
labels: Array<{
text: string;
confidence: number;
index: number;
}>;
trackingID?: number;
}
tip
To use a custom TFLite model for inference, see Using a Custom Model.