Using a custom model
Your custom model needs to be compatible with MLKit. Refer to Custom Models with MLKit for general information on MLKit model compatibility, and specifically the section on TensorFlow Lite model compatibility.
1. Add your model to the project
Place your model somewhere that makes sense in your project. For example, you might place it in assets/models/
.
cp ~/my-custom-model.tflite ./assets/models/my-custom-model.tflite
2. Configure Metro to bundle TFLite files
Metro usually ignores unknown file types when bundling the app.
Update your metro config so Metro knows to include .tflite
files in the app bundle.
To do this, create / edit your ./metro.config.js
file:
// metro.config.js
const { getDefaultConfig } = require("expo/metro-config");
const config = getDefaultConfig(__dirname);
config.resolver.assetExts.push(
// Adds support for `.tflite` files for TFLite models
"tflite"
);
module.exports = config;
See the Expo Docs for detailed instructions on customizing metro.
3. Set up the model context provider
First define an AssetRecord
object with the details of your model. An asset record is a map of model names to model
details.
type ModelInfo = {
model: number;
options?: RNMLKitCustomObjectDetectorOptions;
};
For a list of options for the default models, see the Options page.
// App.tsx
import {
AssetRecord,
useObjectDetectionModels,
} from "react-native-mlkit-object-detection";
const MODELS: AssetRecord = {
// the name you'll use to refer to the model
myCustomModel: {
// the relative path to the model file
asset: require("./assets/models/my-custom-model.tflite"),
options: {
// the options you want to use for this model
shouldEnableMultipleObjects: false,
shouldEnableClassification: false,
detectorMode: "singleImage",
},
},
};
// For descriptions of options for default models see link below this snipped.
function App() {
// fetch the provider component from the hook
const { ObjectDetectionModelContextProvider } = useObjectDetectionModels({
models: MODELS,
loadDefaultModel: false,
});
return (
<ObjectDetectionModelContextProvider>
// Rest of your app
</ObjectDetectionModelContextProvider>
);
}
3. Fetch the model using the useObjectDetectionModel
hook, and use it to detect objects in an image
// MyComponent.tsx
import {
useObjectDetector,
RNMLKitDetectedObject,
} from "@infinitered/react-native-mlkit-object-detection";
function MyComponent() {
// fetch the model from the hook, if you don't pass a model name it will fetch the default MLKit Object Detection model
const { model } = useObjectDetector("myCustomModel");
const [modelLoaded, setModelLoaded] = useState(model?.isLoaded() ?? false);
// Models must be loaded before they can be used. This can be slow, and consume
// a lot of resources so consider carefully where and when to load the model
React.useEffect(() => {
// Loading models is done asynchronously, so in a useEffect we need to wrap it in an async function
async function loadModel() {
if (!model || modelLoaded) return;
// load the model
await model.load();
// set the model loaded state to true
setModelLoaded(true);
}
loadModel();
}, [model, modelLoaded]);
// the output of the model is an array of `RNMLKitDetectedObject` objects
const [result, setResult] = useState<RNMLKitDetectedObject[]>([]);
useEffect(() => {
if (!modelLoaded) return;
// model.detectObjects is async, so when we use it in a useEffect, we need to wrap it in an async function
async function detectObjects(image: AssetRecord) {
const result = await model.detectObjects(image);
setResult(result);
}
detectObjects();
}, [model, modelLoaded]);
return <View>{JSON.stringify(result)}</View>;
}